Testing of Small and Large Sign Support Systems FOIL Test Number: 92F037

U.S. Department of Transportation

Federal Highway Administration

Research and Development
Turner-Fairbank Highway Research Center 6300 Georgetown Pike
McLean, Virginia 22101-2296

NOTICE

This document is disseminated under the sponsorship of the Department of Transportation in the interest of information exchange. The United States Government assumes no liability for its contents or use thereof. This report does not constitute a standard, specification, or regulation.
.The United States Government does not endorse products or manufacturers. Trade and manufacturers' names appear in this report only because they are considered essential to the object of the document.

[^0]rounding should be made to comply with Section 4 of ASTM E380.

Table of Contents.

1. SCOPE 1
2. TEST MATRIX 1
3. VEHICLE 1
4. SIGN SUPPORT 1
5. TEST RESULTS - TEST $92 F 037$ 2
6. CONCLUSION 3
7. REFERENCES 17

List of Figures.

Figure No. Page

1. Sketch of small sign support 4
2. Sketch of small sign, splice detail 5
3. Test photographs during impact, test $92 F 037$ 6
4. Summary of test 92 F 037 7
5. Acceleration versus time, X-axis, test 92 F 037 8
6. Velocity versus time, X-axis, test 92 F 037 9
7. Force versus displacement, X-axis, test $92 F 037$ 10
8. Occupant velocity and relative displacement versus time, X-axis, test 92F037 11
9. Pretest photographs of test 92F037 12
10. Additional pretest photographs of test $92 F 037$ 13
11. Post-test photographs of test $92 F 037$ 14
12. Additional post-test photographs of test $92 F 037$ 15
13. Sketch of vehicle crush, test $92 F 037$ 16
List of Tables.
Table No.
14. Test matrix 1

1. SCOPE

This test report contains the results of a crash test performed at the Federal Outdoor Impact Laboratory (FOIL) in McLean, Virginia. The test was performed on a small sign support system at $20 \mathrm{mi} / \mathrm{h}(32.2 \mathrm{~km} / \mathrm{h})$, test 92 F 037. The vehicle used for this test was a 1984 Honda Civic. The purpose of this test was to evaluate the low-speed safety performance of the sign support system. The sign support was a triple-post $2.5-1 \mathrm{~b} / \mathrm{ft}(3.7-\mathrm{kg} / \mathrm{m}) \mathrm{u}$-channel sign support with an 8 -in (203.2-mm) splice-joint. The performance evaluation was based on the latest requirements for breakaway supports as specified in Volume 54, Number 3 of the Federal Register dated January 5, 1989. These criteria specify, in part, that the occupant change in velocity must be $16 \mathrm{ft} / \mathrm{s}(4.9 \mathrm{~m} / \mathrm{s})$ or less, that the significant test article stub height remaining after impact be no more than 4 in (101.6 man), and that there can be no occupant compartment intrusion.

2. TEST MATRIX

The test was performed on a small sign support system. The test speed was $20 \mathrm{mi} / \mathrm{h}(32 \mathrm{~km} / \mathrm{h})$. The sign was buried in NCHRP Report Number 230, S-1 strong soif ${ }^{(1)}$. A summary of the test conditions is presented in table 1.

Table l. Test matrix.							
Test Number	Test Date	Test Vehicle	Test Weight (1b)	Test Speed (mi/h)	Test Article Description	Impact Location	
925037	$12-3-92$	'84 Honda Civic	1850 839 kg	20 $32 \mathrm{~km} / \mathrm{h}$	31 eg steel $2.5 \mathrm{~b} / \mathrm{ft}$	center	

3. VEHICLE

The test vehicle was a 1984 Honda Civic two-door hatchback with a manual transmission. Prior to the test, the vehicle's fluids were drained and its inertial properties measured. The vehicle was stripped of certain components which made space for the installation of test equipment. The vehicle was ballasted with a data acquisitions system, transducers, a brake system and weight plates (if necessary) to bring its inertial weight to approximately $1850 \mathrm{lb}(839 \mathrm{~kg})$. The actual weight of the test vehicle was $18501 \mathrm{~b}(839 \mathrm{~kg})$. After ballasting, the vehicle's inertial properties were remeasured.

4. SIGN SUPPORT

The sign support system consisted of three $2.5-1 \mathrm{~b} / \mathrm{ft}(3.7-\mathrm{kg} / \mathrm{m})$ steel u-channel posts with a sign blank attached. Each post was constructed from two pieces of u-channel. One section, the stub, was 3 ft 4 in (1.02 m) in length and the other section was $13 \mathrm{ft} 4 \mathrm{in}(4.1 \mathrm{~m})$ long. The two sections were overlapped 8 in (203.2 mm) and attached with two $3 / 8-\mathrm{in}(9.5-\mathrm{mm}$) diameter grade-2 bolts. Between the sections of u-channel were $5 / 8$ in (15.9 mm) long spacers (washers). The two pieces of u-channel were connected such that the upper post was behind the stub post. The three two-piece posts were assembled and attached to a $6-\mathrm{ft}$ by $6-\mathrm{ft} 3$-in ($1.8-\mathrm{m}$ by $1.9-\mathrm{m}$) aluminum sign blank such that the panel was $7 \mathrm{ft}(2.1 \mathrm{~m})$ above ground. The three legs were installed
$1.7 \mathrm{ft}(0.5 \mathrm{~m})$ apart. The whole sign support system was assembled and inserted $3 \mathrm{ft}(0.9 \mathrm{~m})$ into NCHRP S-1 strong soil. The hole around the sign support was backfilled in δ-in ($152.4-\mathrm{mm}$) lifts and compacted until the final grade was reached. Figure 1 and figure 2 are drawings of the sign support system.

5. TEST RESULTS - TEST $92 F 037$

The test vehicle was accelerated to $21.1 \mathrm{mi} / \mathrm{h}(31.0 \mathrm{ft} / \mathrm{s}(34 \mathrm{~km} / \mathrm{h})$) prior to impacting the sign support. The centerline of the test vehicle was aligned with the center sign post.

The bumper made contact with all three sign posts and they began to collapse. The u-channel legs began to bow away from the vehicle. The u-posts began to plow through the strong soil, however the resistive force of the soil did not allow the posts to continue to plow through it. The force builds at the point of contact and the left post failed at 0.016 s . Left post failure was followed by the' left post's grade -2 splice bolts failing at 0.024 s . The left post was aligned with the left bumper support of the vehicle which caused the post failure. Crush of the vehicle did not allow failure of the center or right u-post early in the impact event. The right post failed approximately $38 \mathrm{in}(965.2 \mathrm{~mm}$) above ground and at 0.038 s . Failure above the bumper level was due to sign post being fastened to the anchor at the bottom and the mass of the large sign panel on the top. The sign post bent as far as possible then broke about half way up the sign post. The vehicle continued to flatten the right stub and the grade -2 bolts failed at 0.042 s . The center post began to wrap around the front end of the vehicle and the center post splice bolts failed as the vehicle tried to force the sign post through the soil. The center post was wrapped around the front end of the vehicle and eventually fractured at 0.090 s . The remainder of the sign system fell on top of the vehicle making contact with the hood, windshield and roof. The contact cracked the windshield along the roof-windshield joint. The contact occurred at 0.430 s .

Damage to the vehicle consisted of damage to the bumper and grill. The center of the vehicle sustained the maximum crush because it is the softest area on the front end. The center of the vehicle sustained a maximum crush of $3.5-\mathrm{in}(88.9 \mathrm{~mm})$. The occupant compartment was intact after the test.

Damage to the sign system consisted of three broken u-channel posts and six fractured grade-2 bolts. The sign panel and stubs were in usable condition after the test. No sign components impaled the occupant compartment.

The occupant impact velocity using the $2-\mathrm{ft}(0.6-\mathrm{m})$ flail space model outlined in NCHRP Report Number 230, was determined to be $8.0 \mathrm{ft} / \mathrm{s}(2.4 \mathrm{~m} / \mathrm{s})$. The occupant impact velocity was reached 0.294 s into the crash event. The ridedown acceteration was 1.6 g 's. The peak acceleration (300 Hz data) for the impact event was 7.8 g 's (peak force $14.4 \mathrm{kips}(64.1 \mathrm{kN})$). Because the sign system remained in contact with the vehicle longer than the time required for an occupant to travel the $2-\mathrm{ft}(0.6-\mathrm{m}) \mathrm{flail}$ space, the vehicle change in velocity is higher than the occupant impact velocity and was calculated to be $9.7 \mathrm{ft} / \mathrm{s}(2.9 \mathrm{~m} / \mathrm{s})$. Photographs during the impact event are presented in figure 3. A summary of the impact conditions and the test results is presented in figure 4 . Figures 5 through 8 are plots of data collected during the test. Pre- and post-test photographs of the vehicle and sign support system are presented in figures 9 through 12. Figure 13 depicts a sketch of the measured vehicle crush.

6. CONCLUSION

The test results indicate that the small sign support system meets all of the applicable criteria for the low-speed test in strong soil. There was no occupant compartment intrusion and the stub remaining after the test was 4.0 in (101.6 mm) which is less than or equal to the $4-\mathrm{in}$ ($101.6-\mathrm{mm}$) limit specified by the FHWA. The occupant impact velocity was $8.0 \mathrm{ft} / \mathrm{s}(2.4 \mathrm{~m} / \mathrm{s})$ which is less than or equal to the $16-\mathrm{ft} / \mathrm{s}(4.9-\mathrm{m} / \mathrm{s})$ limit specified by the FHWA.

Figure l. Sketch of small sign support.

Figure 2. Sketch of small sign, splice detail.

Figure 4. Summary of test 92F037.

Figure 5. Acceleration versus time, X-axis, test 92 F037.

TEST NO. 92F037

$1 \mathrm{ft}=0.305 \mathrm{~m}$
Figure 6. Velocity versus time, X-axis, test $92 F 037$.

TEST NO. 92F03

$1 \mathrm{lbf}=4.45 \mathrm{~N} \quad 1 \mathrm{ft}=0.305 \mathrm{~m}$
Figure 7. Force versus displacement, X-axis, test 92 F037.

TEST NO. 92F037

$1 \mathrm{ft}=0.305 \mathrm{~m}$
Figure 8. Occupant velocity and relative displacement versus time, X-axis, test 92 F 037.

电 （1）
（

Figure 13. Sketch of vehicle crush, test 92F037.

7. REFERENCES

(1) Jarvis D. Michie, Recommended Procedures for the Safety Performance Evaluation of Highway Appurtenances, National Cooperative Highway Research Program Report Number 230, March 1981.

[^0]: SI is the symbor lor tie intomaional System of Units. Appropinate

